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Abstract. The problem of reducing the symmetrized powers of the corepresentations of a 
magnetic group is solved by relating it to the analogous problem for representations of the 
unitary subgroup. Use is made of a formula given by Littlewood for the symmetrization 
of the direct sum of two matrices. A procedure is also given for the complete reduction of a 
reducible corepresentation which assumes that the unitary part has already been completely 
reduced to canonical form. 

1. Introduction 

Magnetic groups, which are groups containing both unitary and antiunitary elements, 
have found an important place in the study of magnetic materials. Since the quantum- 
mechanical time-reversal operator is antiunitary these groups also arise in other 
branches of physics. The literature on magnetic groups and their corepresentations, 
the latter being a construction introduced by Wigner, is now rather extensive, but 
fairly complete studies and bibliographies may be found in the following books and 
articles : Wigner (1959), Bradley and Davies (1968), Bradley and Cracknell (1972), 
Opechowski and Guccione (1965). 

Although corepresentation theory has been well developed since Wigner’s pioneering 
work, few papers have been devoted to the problem of reducing the symmetrized nth 
powers of a corepresentation. The exceptions are Cracknell(l971) and Cracknell and 
Sedaghat (1972), containing the application of the cases n = 2,3 to the theory of second- 
order phase transitions in magnetic crystals. The case n = 2 also has relevance to 
selection rules for magnetic materials (Backhouse 1974). 

It is well known that a magnetic group M has a halving subgroup G of unitary 
elements and that many properties of Mare  deducible from the corresponding properties 
of these unitary elements. In what follows we assume a full knowledge of the representa- 
tions of G in terms of which we show how to calculate and reduce the symmetrized nth 
powers of the corepresentations of M. The first part of this problem, the determination 
of Clebsch-Gordan series, is discussed in $2, relying on the result that a corepresentation 
is determined up to unitary equivalence by its restriction to the unitary subgroup. 
The second part of the programme, the determination of nth order symmetrized Clebsch- 
Gordan matrices, is resolved in $ 3, and depends essentially on a construction of a 
complete reduction matrix for a reducible corepresentation from that of its associated 
ordinary representation. The generality of the latter offers an alternative procedure to 
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that of Aviran and Litvin (1973) and Sakata (1974b) for the construction of Clebsch- 
Gordan matrices for corepresentations. 

In connection with our work we draw attention to some recent papers devoted to 
or mentioning the reduction of symmetrized powers and the construction of Clebsch- 
Gordan matrices : Aviran and Zak (1968), Backhouse (1973), Backhouse and Gard 
(1974a, b, c), Boyle (1972), Bradley and Davies (1970), Cracknell(1974), Gard (1973a, b, c), 
Gard and Backhouse (1974), Koster (1958), Lewis (1973), Sakata (1974a). 

2. Symmetrized powers of corepresentations 

Employing the notation of Bradley and Davies (1968), we write the group of unitary 
and antiunitary elements as M = G U A G ,  where G is the halving subgroup of unitary 
elements and A is an arbitrary antiunitary element. Let A be a UIR (unitary irreducible 
representation) of G and let D be the associated corep (irreducible corepresentation) 
of M. The canonical form for the three types of coreps is derived, for example, by 
Bradley and Davies (1968). They show that if b, defined by b ( R )  = A * ( A - ' R A )  for 
R E G, is unitarily equivalent to A ,  so that A ( R )  = Pb(R)P-  ' for all R E G, then the 
corresponding corep D may be taken in one of the following two forms. 

Case (a )  

If PP* = A(A2) ,  then 

D ( R )  = 4 R ) ,  

D(B)  = A(BA-  ' ) P ,  

for R E G 

for B E AG. 

Case (b)  

I f  PP* = -A(A2) ,  then 

for R E G, where + denotes direct summation and is not to be confused with + which 
denotes matrix addition ; 

for B E  AG. 
0 

D(B) = 

If A is not equivalent to A then case (c) gives the canonical form for D. 

Case ( c )  
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Implicit in the above is that the equivalence class of a corep D is completely deter- 
mined by the restriction of D to the unitary subgroup G, which for the canonical forms 
is A, A + A  or A + &  It follows that if [v] denotes a UIR of S,,, then the nth symmetrized 
power D"] is determined by A['], (A+A)['], in cases (a), (b), (c) respectively. 
We have here used the simple result that D'"] 1 G = (D 1 @['I, where 1 denotes restriction. 
It is worthwhile pointing out that there is at  present no character theory for full co- 
representations, so the above comments are essential. This point is discussed more 
fully by Cracknell (1971). 

Since we assume we can symmetrize the UIR of C, case (a) coreps can be dealt with 
immediately. The other cases require application of the following result, being a special 
case of the plethysm formula given by Littlewood (1950). 

2.1. Lemma 

Let A , , A2 be UIR of G. Then 

(A,  +A2)['] E a ( v ;  \I,, ~,)Ayll@AI2y~~,  

where the direct sum is taken over all partitions of n as n = n ,  + n ,  and over all UIR 
[v,], [v,] ofS,,, S,, respectively. a ( v ;  v l ,  v,) is the frequency of [v1]@[v2] in [v] J S n ,  x Sn2. 

In the lemma the number a(v;v,, v,), which is also the frequency of [VI in 
[v,]O[v,]  = [v,]@[v,] t S,,, is most easily calculated by using the diagram technique 
described by Hamermesh (1964). In particular we note the following results. 

2.2. Corollary 

1. 

where "C, is the binomial coefficient, n ! / ( n  - I )  !r  ! 

2. (Al  /A2)["] e 1 A[;]@A[;-'], 

where [k] is the totally symmetric rep of S, and A['] = 1. 

3. (A1 +A,)['"] A[,"]@A~ln-']. 

where [Ik] is the totally antisymmetric rep of S,. 
4. Let A , ,  A, be linear characters and [ V I  = [ i l l ,  v,], then 

n 

(Al  +A2)" s c "Cr@; QA;-rL 
r = O  

n 

r = O  

n 

r = O  

From (2.3) and (2.4) we obtain for a case (c) corep the following equivalences : 

(D 1 G)L2] 3 A[,] + (A@&) + &[,I, (2.6) 

(D 1 G)[1*1 A[1'I+(A@&)+&r121, (2.7) 
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These are results also given by Cracknell (1971), Cracknell and Sedaghat (1972). Also, 
either using (2.1) or using (2.2) with (2.8) and (2.9), we find 

( D  4 @ [ 2 g 1 1  A [ 2 ~ 1 1 + ( A z @ & ) + ( A @ & 2 ) / ~ ~ 2 , 1 1 .  (2.10) 

The corresponding results for case (b)  are obtained by replacing & with A. In using 
(2.1) it is often important to realise that A[''] is void if dim A is less than the number of 
nonzero rows of [VI. Also, in applying (2.1) to coreps, it is useful to note its symmetry. 
Thus for case (b)  coreps, for each term Atvll@A[vzl,  there is also a term Arv21@A['11. 
For case ( c )  coreps, for each term A[v11@8vz1 there is also the conjugate term 
&[vll@A[vzl. These observations approximately halve the amount of work involved in 
the reduction of Dtvl for case (b), ( c )  coreps, and indeed they enable one to reproduce 
immediately table V of Clebsch-Gordan coefficients in Bradley and Davies (1968). 
It is important to note where and why our notation differs from that of Cracknell(l971) 
and Cracknell and Sedaghat (1972). These authors use square and brace brackets to 
denote totally symmetrized and totally antisymmetrized powers. Unfortunately the 
use of brackets does not easily extend to other symmetrized powers, hence our use of the 
superscript notation D['] which is quite explicit. 

3. The reduction of corepresentations 

We have shown how the implementation of (2.1) allows a partial reduction of the sym- 
metrized powers of case (b)  and ( c )  coreps. Our assumed knowledge of the UIR of G 
implies that the corresponding Clebsch-Gordan series can be written down. However, 
the determination of complete reduction matrices requires more consideration. In 
any given example we may assume that we can explicitly write down a basis for the sym- 
metrized corepresentation and hence explicitly determine the matrices which form the 
latter. For the determination of Clebsch-Gordan matrices it suffices to apply the 
solution of the following problem : given a corepresentation D of M ,  find a unitary matrix 
W which satisfies 

WD(m)&m)W-' = aiDi(m) 
i 

(3.1) 

for all m E M ,  where &m) is the identity operator if m E G and is the complex conjugation 
operator if m E M-G.  The coreps Di  in (3.1) are assumed to be inequivalent fixed 
representatives of the equivalence classes of coreps, taken in canonical form. 

The irreducible constituents of D ,  with their multiplicities a i ,  are determined by 
those of D 4 G, so let us assume that a unitary matrix U has been found where 

in which Di 1 G is A i ,  Ai  + Ai or Ai + according to type. U may be determined by the 
method of Koster (1958), Gard (1973~) or Sakata (1974a). Since U will not in general 
completely reduce D as well as D 1 G, we must find a unitary matrix B such that W = BU.  
In (3.2) we see that B must preserve the reduced form of D 1 G. Hence, dividing B into 
block matrices suitable for block matrix multiplication, it follows from Schur's lemma 
that-each block is either zero or a scalar multiple of the identity. Thus B = C i B i ,  
where Bi = violi, Ii is a unit matrix having the same dimension as A i ,  and is a unitary 
matrix whose dimensions depend on the canonical form of Di.  From this we deduce 
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that any matrix U which reduces D 1 G must reduce D itself to superblock form 
X i  D"), where D") 1 G = ai(Di  1 G). Hence we seek matrices Bi such that 

BiD"'#B; = aiDi,  

where E ,  = v@Zi. We consider the three types of coreps in turn, and for convenience 
we replace the index i by a subscript j ( j  = 1 , 2 , 3 )  to indicate the type of corep being 
considered. 

Case (a) 

Consider that summand of (3.1) corresponding to the case (a) corep D ,  . Explicitly we 
have 

(3.3) 

(3.4) 

for R E G ,  where ZOI is the a ,  x a ,  identity matrix and PI satisfies P,P: = A1(A2).  
Let U be any unitary matrix which reduces D 1 G to  diagonal form. If B = W U - ' ,  
where W reduces D to diagonal form, we know that the reduction of D by U must lead 
to the submatrix (V:'V:)@P, instead of (3.4), where E ,  = V , @ Z d , ,  d ,  = dim A ,  and 
VI is an a ,  x a ,  unitary matrix. In an actual example we would reduce D ,  using U ,  to 
obtain the superblock Q,@Pl and then seek a unitary matrix VI such that Q,  = VT'V:. 
This is done as follows. 

Writing TI = V : ,  then Q l  TI = T: is the equation for the unknown unitary matrix 
TI. Since Q I  is necessarily unitary, there exist a ,  unitarily orthogonal eigenvectors 
( t k }  such that Q,tk = & t k  where IAk1 = 1 .  Since Q,  is also symmetric, Q;' = QT and 
Q,r; = A&, so that t k  and t: correspond to the same eigenvalue lk .  If tk and tf are 
dependent then t k  = Zkek where zk is a complex number and ek is a real eigenvector. 
Otherwise t k  + e and i(tk - t:) are independent real eigenvectors. Hence we can con- 
struct a basis { e k }  of real orthogonal eigenvectors. Define fk = E.;112ek, then 
Q ,  f k  = A:'2f?k = f :. We take to be the unitary matrix built from the column vectors 
{ f k } ,  then B ,  = T : @ l d , .  

Case (b )  

The summand of (3.1) corresponding to the case (b )  corep D ,  is given by 

where P, satisfies P2Pf = - A2(A2). Reducing D by E -  W leads to (3.5), but 

instead of (3.6), where E ,  = V2@Zd2, d ,  = dim A, and V2 is a 2a2 x 2a2 unitary matrix. 
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It follows that if the reduction of D ( A )  by U yields the component Q 2 @ P 2 ,  we seek a 
unitary V, such that 

Write V i  = T2,  then 

Since Q 2  is unitary there exists 2a2 unitarily orthogonal eigenvectors {Sk} such that 
Q2sk = ppk, where lpkl = 1. Also since Q 2  is skew-symmetric, Q;' = -Q:  and 
Q2s: = -p&. It follows that we may choose a new basis such that the eigenvectors 
occur in complex conjugate pairs ( I l k ,  u t ) .  Now define el') = (p; "* / , /2) (u, -u~)  and 
el2) = (p;"2/,/2)(uk+u:). Then Q2eL1) = el2)* and Q2ei2) = - e r ) .  Clearly we may 
take T2 to be the unitary matrix built from pairs of column vectors {ei'), eL2)}. 

Case (c)  

The canonical form of a case ( c )  corep D, is given by D,(R) = A3(R)-LA3(R) for R E G, 
and 

where d ,  = dim A,. However, it is convenient in cases of multiplicity to perform a 
simple permutation of the basis vectors so that the reduced part of D corresponding to 
the corep D, becomes (Ia3@A3)+(Ia3@A3) for the unitary part and 

(3.8) 

for the representative of A.  Reducing D by B -  W leads to the correct unitary part but 
gives 

instead of (3.8), where E ,  = (V,(l)+ V3(2))@Id3 and V3(l), V3(2) are a3 x a3 unitary 
matrices. Hence if the reduction of D(A)  by U yields the component 

(3.10) 

we seek unitary matrices V3(l), V3(2) such that Q ,  = V$'(l)V$(2). The simplest solution 
is V3(l) = Q:' and V3(2) = Ia3, and then B ,  = (Q:'+Za3)@Zd3. Now applying the 
inverse of the original permutation, so that the final reduced form is given by (3. l), we 
obtain B; = V 3 @ l d 3 ,  where the submatrix (V3)i j  for i, j both odd is ( Q $ r ) i j ,  for i, j both 
even is (ZaJij and all other entries are zero. 

To summarize: first find the unitary matrix U which completely reduces D 1: G 
as in (3.2). Secondly, calculate the matrix UD(A)U',  which will automatically be partially 
reduced into superblocks, each superblock corresponding to one of the forms dealt 
with above. For each superblock we apply the relevant method to find the matrix Bi 



456 P Gard and N B Backhouse 

(we have reverted to the original index i). The Clebsch-Gordan matrix is W = ( E i  Bi)U 
where the direct sum is over all superblocks. 

We conclude with two very simple examples. The first illustrates the power of our 
method for finding ordinary Clebsch-Gordan coefficients, since the same example has 
been treated by Aviran and Zak (1968). Consider M = C,v+6C,v and the reduction 
of D:@D, to DZ 4 DZ,  where in their notation D ,  is the two-dimensional single-valued 
corep and D4, D ,  are the two-dimensional double-valued coreps of M. The matrices 
of these coreps are given in table I1 of Aviran and Zak (1968), but for convenience we 
choose the angles a, t,b to be zero. It is easy to verify that the matrix 

/ l  0 0 o \  

(3.11) 

\o 0 0 I /  

reduces the unitary part of D:@D, to the unitary part of D: + D:, but leaves invariant 
the matrix representing 6, namely 

/ o  0 0 - l \  

(3.12) 

\ 1  0 0 0 1  

which can be rewritten as 

0 -1 0 1  
( - 1  O H - 1  0) 

Since DX is case (a) we can write the complete reduction matrix W = BU, where 
B = V @ I ,  and I/ is a 2 x 2 unitary matrix satisfying 

0 -1  
Y*'V* = Q = ( - 1  4. 

The theory gives 

v=-( 1 ;) 
4 2  - i  

and i t  is easy to check finally that W does indeed perform the complete reduction. 
The second example illustrates the technique for finding the Clebsch-Gordan 

coefficients for a symmetrized power. For this we choose M = 4', having elements 
{ E ,  C , ,  BC,, 6C:}, so that G is the subgroup ( E ,  C2}. It is easy to verify that the non- 
trivial rep of G extends to a case (b) corep of M, and that the matrices of this corep are 

for the elements E,  C , ,  BC,, 6C: respectively. Now the totally symmetrized cube of 
this corep, DT, , has been computed by Cracknell and Sedaghat (1972) to be DT, + DT, . 
Indeed we instantly verify this fact using equation (2.8). Again using (2.8) we see that if 
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DT,  acts on the two-dimensional vector space with basis U ,  U, then (Dr,)[31 acts on the 
four-dimensional vector space with basis 

u@u@u, u@u@v, U@U@U, u@u@u. 

O n  this space (Dr,)r31(OC,) is represented by the matrix 

i o  0 0 -l\ 

(3.13) 

\ 1  0 0 o /  
which is clearly not completely reduced. We are in a case (b)  situation and we have 
P = 1 and Q = X ,  hence the theory tells us that we must seek a 4 x 4 unitary matrix V ,  
where 

and that then B = I/ completely reduces (Drz)[31. We find that Q has eigenvalues i, - i, 
i, - i ,  with corresponding eigenvectors (1/J2)(1 0 0 -i)*, (1/J2)(1 0 0 i)', 
(1/J2)(0 1 i O)', (1/ J2)(0 1 - i  0)'. Analysis quickly leads to 

' 0  0 0 -J i  '=I:' 0 0  Ji a 
O IiJi  O 

and we verify that B does indeed completely reduce 

(3.14) 
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